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ON HARMONIC (h,r)-CONVEX FUNCTIONS

MUHAMMAD ASLAM NOOR!, KHALIDA INAYAT NOOR?,
AND SABAH IFTIKHAR?

ABSTRACT. In this paper, we introduce a new class of harmonic con-
vex functions with respect to an arbitrary nonnegative function h and
a parameter r, which is called harmonic (h, r)-convex functions. We es-
tablish some new Hermite-Hadamard type integral inequalities for har-
monic (h,r)-convex functions. Some special cases are discussed, which
appears to be new ones. Our results represent a significant refinement
of the known cases. Ideas an techniques of this paper may motivate
further research in this dynamic field.
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1. INTRODUCTION

Convexity theory has become a rich source of inspiration in pure and ap-
plied sciences. This theory has not only stimulated new and deep results in
many branches of mathematical and engineering sciences, but also provided
us a unified and general framework for studying a wide class of unrelated
problems. For recent applications, generalizations and other aspects of con-
vex functions and their variant forms, see [1, 6, 10, 12, 13, 14, 15, 16, 17,
25, 26, 27]

In recent years, convex functions have been generalized and extended
in several directions using the novel and innovative techniques to study a
wide class of unrelated problems in a unified framework. Varosanec [29],
introduced the class of h-convex functions with respect to an arbitrary non-
negative function h. She has shown that this class contains some previously
known classes of convex functions as special cases. Pearce et. al [24] in-
vestigated another class of convex functions, which is known as r-convex
functions. This class of r-convex functions includes the convex functions
and log-convex functions as special cases.

Definition 1.1. [24]. Let r be a fized real number. A function f : I =
[a,b] C R — R is r-convez, if, Vx,y € I and t € [0,1], we have

(L= t)a+th) < { e G

It is clear that 0-convex functions are simply log-convex functions and
1-convex functions are ordinary convex functions.
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Ngoc et. al [12] obtained the Hermite-Hadamard inequality for r-convex
functions.

Theorem 1.2. Let f € HR(r,I) be r-convex function, where a,b € I. If
f € La,b]. Then, forr >0,

()] < (55 [ 1) < () wer - von.

Hap and Vinh [10] established a Hermite-Hadamard inequality for (h,r)-
convex functions.

Definition 1.3. [10]. Let r # 0 be a real number and h : J — R be a
nonnegative function. We say that f : I = [a,b] C R — R is (h,r)-convex
function, or f belongs to the class HR(h,r,I), if

F(=ta+1b) < (1= O[f@)] + b)), VYeyeLteo].

Theorem 1.4. [10]. Let f € HR(h,r,I), where a,b € I. If f € Lla,b].
Then, for r > 0,

% < (5 [ r@w) < wr - von( [ moke)

It is well known that harmonic means have important applications in
various branches of pure and applied sciences such as circuit theory, game
theory and geometric function theory. Harmonic means play significant role
in the development of the parallel algorithms for solving nonlinear problems.
It is known that harmonic convex functions are defined on the harmonic
convex sets, which has emerged a significant and important generalization of
the convex functions.. Several properties and characterizations of harmonic
convex functions have been investigated and studied by Anderson et al. [1]
and Iscan [11]. See also [19, 22] and the references therein.

Definition 1.5. A set I = [a,b] C R\ {0} is said to be a harmonic convex
set, if
W
tr+(1—1t)y
Definition 1.6. A function f : I = [a,b] C R\ {0} — R is said to harmonic

convez, if

zy
f(m) <A =t)f(z)+tf(y), Va,y e I,t € 0,1].

el, Vz,y € I,t €[0,1].

In particular, it has been shown [11] that f is a harmonic convex function,
if and only if,

2ab ab b f(z a)+ f(b
() < [ JOLO ey,

which is called Hermite-Hadamard inequality for harmonic convex function.

Noor and Noor[18, 19] have shown that the minimum of the differentiable
harmonic convex functions on the harmonic convex sets can be characterized
by a class of harmonic variational inequalities. This is a new problem and
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deserve further efforts to find the applications of the harmonic variational
inequalities in various fields of pure and applied sciences.

Noor et al[20] introduced and studied a new class of harmonic r-convex
functions. They have derived some interesting Hermite-Hadamard type in-
equalities for harmonic r-convex functions. We point out that the classes of
h-convex functions, r-convex functions and harmonic r-convex functions are
different generalizations of the convex functions. It is natural to study these
classes of convex functions in a unified manner. Inspired and motivated by
the ongoing research, we introduce the concept of harmonic (h,r)-convex
function with respect to an arbitrary nonnegative function h. This class is
more general and contains several new classes of harmonic r-convex function-
s such as Breckner type of s-harmonic r-convex functions, Godunova-Levin
type of s-harmonic r-convex functions and harmonic P-r functions. We
discuss some properties of harmonic (h,r)-convex function. We establish
several Hermite-Hadamard inequalities for harmonic (h, r)-convex function.
One can derive several Hermite-Hadamard type inequalities for our main
results for different classes of harmonic convex functions. The readers are
encouraged to find the applications of harmonic (h,7)— convex functions in
various fields of pure and applied sciences.

We now introduce some new concepts.

Definition 1.7. Let r be a real number and h : J — R be a nonnegative
function. We say that f : I = [a,b] C R\ {0} — R is harmonic (h,r)-convex
function, or f belongs to the class HR(h,r,I), if. Vx,y € I,

_ (A1 =D[f @) + OO} 7 #0
W f(m +(1- t)l/) = { (f(@))'=H(£(B)) ;7 =0.

The function f is said to be harmonic (h, r)-concave function, if and only
if, -f is harmonic (h, r)-convex function.

For t = %, we have

229\ S (T ,
() < @ @) + W), veoer,

S|

which is called Jensen harmonic (h, r)-convex function.

Now we discuss some special cases of harmonic (h,r) convex function,
which appears to be new ones.

I. If we take h(t) = ¢ in Definition 1.7, then it reduces to the Definition
of harmonic r-convex functions, which was introduced by Noor et al[20].

Definition 1.8. Let r # 0 be a real number. We say that f : I = [a,b] C R\
{0} — R is harmonic r-convex function, or f belongs to the class HR(r,I),

if

f<ﬁ) <[A=B[f@)] +tlf"r.  Va,yeIlteo1].

If » = 1 in Definition 1.7, then it reduces to the Definition of harmonic
h-convex functions, see [11].
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IL. If h(t) = t° in Definition 1.7 then it reduces to the Definition of
Breckner type of s-harmonic r-convex functions.

Definition 1.9. Let r # 0 be a real number. We say that f : I = [a,b] C
R\ {0} — R is harmonic s-r-convex function, or f belongs to the class

HR(s,r,I) and s € (0,1), we have

xy S T S T 1
V<1t ' Y, Va,yel,telol]
Harily,) <= 0U@! + eI, vayerieb

IIL. If h(t) = t° in Definition 1.7, then it reduces to the Definition of
Godunova-Levin type of s-harmonic r-convex functions.

Definition 1.10. Let r # 0 be a real number. A function f : I = [a,b] C
R\ {0} — R is Godunova-Levin type of s-harmonic r-convex functions, or
f belongs to the class HR(—s,r,I), and s € (0,1), we have

i —s r —s rid
— | < [(1-t t T, Ve,y e I,t € (0,1).
arigy ) <=0 U@P+ I, Veyelte©)

It is obvious that for s = 0, s-harmonic Godunova-Levin r-convex func-
tions reduce to harmonic P-r-convex functions. If s = 1, then s-harmonic
Godunova-Levin r-convex functions reduce to harmonic Godunova-Levin r-
convex functions.

Definition 1.11. [25]. Two functions f, g are said to be similarly ordered
(f is g-monotone), if and only if,

(f(x) = f(y),9(x) —g(y)) >0,  Va,y e R".

One can easily show that if f and g are two similarly ordered harmonic
(h, r)-convex functions and h(1 —t) + h(t) < 1, then the product fg is again
a harmonic (h, r)-convex function, see, for example, Noor et al[20].

The Euler Beta function is a special function defined as:

1
B(z,y) 2/0 " 11—ty dt, Va,y > 0.

2. MAIN RESULTS

In this section, we obtain Hermite-Hadamard inequality for harmonic
(h, r)-convex function. Let I and J are intervals in R , [0,1] C J, functions
h, k are real positive defined on J and f, g are real positive functions defined
on I.

We recall the following well known fact [6], which plays a crucial part in
obtaining the main results.

Fact[6]: If the the function g : [§,1] — R is defined by g(t) = f(%), then
f is harmonic (h,r)-convex on [a, ], if and only if, g is (h,r)-convex on [, 1].
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Theorem 2.1. Let f : I = [a,b] C R\ {0} = R be harmonic (h,r)-convex
function. If f € Lla,b] then

sl ()] = (%) )
sy + Lo ( [ 1 h(t)%dt>r.

Proof. We consider Hermite-Hadamard inequality for (h, r)-convex function
g(t) = f(%) on the closed interval [f,1], that is,

b () = (e o))

IN

1 L\

< W@y +on( [ aotar)
Using change of variable x = %, we obtain the Hermite-Hadamard inequality
for harmonic (h, r)-convex functions. O

We now discuss some special cases of Theorem 2.1 which appears to new
ones.
I. If A(t) = t, then Theorem 2.1 reduces to the following result.

Corollary 2.2. Let f : I = [a,b] C R\ {0} — R be harmonic r-convex
function. If f € Lla,b], then

(2] < (% ab%dx)rS([f(a)]“+[f(b)]’)<ri1>r-

II. If h(t) = t°, then Theorem 2.1 reduces to the following result.

Corollary 2.3. Let f : I = [a,b] C R\ {0} — R be harmonic s-r-convex
function. If f € Lla,b] and s € (0,1), then

> [1(Z2)] < (2 [ 15 ae) < vomn ()

IIT. If A(t) = t~*, then Theorem 2.1 reduces to the following result.

Corollary 2.4. Let f : I = [a,b] C R\ {0} — R be harmonic s-r Godunova-
Levin function. If f € L[a,b] and s € (0 1), then

1 2ab b f , , !
w1 (Z5)] < (5% [ 2 ae) < wr+von ()
Theorem 2.5. Let f € (h,r, I) and g € (k,r,I) with a < b. Then, for
r >0,

(525 [ 1)
a:2

< artan)( /0 k() dt) “nan( [ 1[h<t>k<1—t>1idt> ,

where

(2) M(a,b) = [fa)g(a)]" + [f(0)g(b)]",
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3) N(a,b) = [f(a)g(®)]" +[f(b)g(a)]"-
Proof. Since f € (h,r,I) and g € (k,r,I) with a < b, where r > 0, we have
ab 1

Hi—y) < - ol + ho Lo
(it ) < W1~ Bl + KOl

Consider

ab ab
f(ta+(1—t)b>g(t +(1—t)b>
< [P =0k = t)[f(a)g(a)]” + A1 = )k(t)[f(a)g(b)]" + h()k(1 — t)[f(b)g(a)]”

1

+h(Ok®)[f(0)g(0)]"]*

Using Minkowskis inequality, we have

(baba /ab f(xig(x) dx>r - (/01 f(ta ¥ 2116* t)b>g<ta ¥ (albf t)b)dt>r

1
< ([ 1= 0k = 91 @) + AOKL = O O] + h(1 - KO (@g(0)
+h(E)k()[F(b)g(b)]]Fdt)”

1 T
<@gy ( [ - ora - o) ) ( TEPRORY
1 1

+[f<b>g<a>r( | mwa - opta ) T F®)e)] ( [ o )
1 1
- ([ﬂa)g(a)r n [f(a)g(a)]r> ( / [h(t)k(t)}rdt)
1 1 T
+([f<a>g<b>r n [f(b)g(a)}r> ( JRICEEE t)]rdt)
1 1 T 1 1 T
_ M(a,b)</0 [h(t)k(t)th) +N(a,b)</0 [h(t)k(lt)}rdt) ,
which is the required result. O

We now some special cases,

I. If we take h(t) = k(t) = t, then Theorem 2.5 reduces to the following
new result.

Corollary 2.6. Let f,g: I C R\ {0} — R be harmonic r-convex functions
on [a,b] with a <b andr > 0. Then

( /f % x) <M(a,b)(r_:2)r+N(a,b)<B<%+1,%+1>>r.

II. If we take h(t) = k(t) = t°, then Theorem 2.5 reduces to the following
new result.
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Corollary 2.7. Let f,g : I C R\{0} — R be harmonic s-r-convex functions
on |a,b] with a < b and r > 0. Then

(b(iba /ab f(x;g(a?) dx>r < M(a,b) (ﬁ)r + N(a,b) (B(; +1, ; + 1>>r.

ITI. If we take h(t) = k(t) = t~°, then Theorem 2.5 reduces to the
following new result.

Corollary 2.8. Let f,g: I C R\{0} — R be harmonic s-r Godunova-Levin
functions on [a,b] with a < b and r > 0. Then

(2 2 st () (o0

Theorem 2.9. Let f € (h,r1,I) and g € (k,r2,1) with a < b. Then, for
r1 > 0, and r9 > 0, we have

ab  [? f(z)g(x)
bfa/a x? dz <

2 1 2
[F(@]™ + [f@)"] ™ / (e dt
0
2 1 2
w5l + o))% [ po)ar
Proof. Since f € (h,r,I) and g € (k,r,I) with (r; > 0, o > 0), we have

Hrty) < I -l + e s

g<ﬁ> < k(1 - Dlg(@)]™ + K(D)a(b)]")

for all t € [0,1]. Now multiplying the above inequalities and integrating over
[0, 1], we have

biba /b f(xig(x)dx = /1f<mJr alb_t b)g<ta+ alb—t b>dt
a 0 =0 Y

1 1 1
< /0 (a1 = D)[f (@] +h@[FO) ] [k(1 = t)[g(a)]™ + k(t)[g(b)]"] ™2 dt.

Using Cauchys inequality, we have

/01 / <ta + (alb— t)b>g<ta ¥ (alb— t)b)dt

1 2
< 5 [ B 0r@r +hoUer

1 2
+ 5 [ B =Dl = KOl
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Using Minkowskis inequality, we have

2

1
/0 [o(1 = O)[f(@)]™ + h@)[F(b)]" ] dt

K/ol p1 =3 7o) . (/ 1 CHIORY
r ([ aa-ota)” o ([wda) ']

2 1 2
~ (@ + O] [ o

Similarly, we have

1
/0 k(1 =8)g(a)]™ + k(@) [g(b)]"] =2 dt

r2 r2 2

K/Ol(k(l -otore) (/01 koSl |

2 [l 2
= [lg(@)™ + o)) /0 k(1)) .

1
2

—_
ETe

IN

IN

Thus

b 2 1 2
@[S g < S - rerE [ meta
0

2
b—a /, T

which is the required result. O

Special Cases:

I. If we take h(t) = k(t) = t, then, Theorem 2.9 reduces to the following
new result.

Corollary 2.10. Let f,g : I € R\ {0} = R be harmonic ri-convex and
harmonic ra-convex functions respectively on [a,b] with a < b. Then r1 > 0
and ro > 0, we have

a b x)glx r 2
7 [ < 5 e s vor

w555 ) ot + o)) =

ro + 2
II. In Theorem 2.9, if 71 = ro = 2, we have

Corollary 2.11. Let f,g : I C R\ {0} — R be harmonic 2-convex functions
on [a,b] with a < b. Then,

1

a b fz)g(x
o [0 < L@ + O + o) + o))

III. In Theorem 2.9, if 11 = 7o = 2 and f(z) = g(x), then, we have
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Corollary 2.12. Let f : I C R\ {0} — R be harmonic 2-convex function
on [a,b] with a <b. Then,

a b X 2
A [ < i+ o]

T

IV. If we take h(t) = k(t) = t°, then Theorem 2.9 reduces to the following
new result.

Corollary 2.13. Let f,g: I C R\ {0} = R be harmonic ri-s-convex and
harmonic ro-s-convex functions respectively on [a,b] with a < b. Then for
ry > 0 and ro > 0, we have

a b r(x)g(x r 2
2 [0 < S W + o

%( - ) [lga)]"™ + [g(®)]™2] .

r9 + 25

V. If we take h(t) = k(t) = t—%, then Theorem 2.9 reduces to the following
new result.

Corollary 2.14. Let f,g: I C R\ {0} — R be harmonic r1-s Godunova-
Levin and harmonic ra-s Godunova-Levin functions respectively on [a,b] with
a <b. Then for r1 >0 and ro > 0, we have

ab [ f(z)g(x)
b—a J, x? de

3 (0 ) @r + o)

r|— 28

w5 (0 ot + o .

7"2725

IN

Theorem 2.15. Let f € (h,m1,I) and g € (k,ro,I) with a < b. Then, for
ry > 0, T2>Oand%+%:1, we have

ab [ f(z)g(x)
b—a /a x2 dz

< (W@ +ror)” (@ + o) ; (/ 1 pejar)’

Proof. Since f € (h,r1,I) and g € (k,r2,I) with (r1 > 0, r2 > 0), we have

Harimas) < O - D@L + ROl

ot < 1= Ol + KOO])

247
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for all t € [0,1]. Now multiplying the above inequalities and integrating over
[0, 1], we have

bciba ab f(xig(m)d“’ N /01 f(ta - (a1b— t)b)g(ta + (alb— tﬂ’)dt

1 1 i
< /0 (1 =8)[f(a)]™ + h@)[F )] [k = )[g(a)]™ + k(t)[g(b)]"*] 72 dt.

Using Holder’s inequality, we have

1 . )
| = D@ + OO = Dlg()l + bols)

1 ﬁ 1 . . -
< ( / [h(l—t)[f(a)]”+h(t)[f(b)]”}dt) ( [ = gty + o lo) Jdt)

7‘

1 1
o) /0 B — t)dt + [f(B)]" /0 h(t)dt) 1

(s

(
<[g(a)]” /0 1k(1_t)dt+[g(b)]rz /0 1k(t)dt> ’

ab " f(x)g(x)
b—a /a x2 dz

< (iar +or) g (1ot + oo - ([ ro) g
(/Olkz(t)dt>%,

which is the required result. O

For suitable and appropriate choice of r1, ro and the function h, one
can obtain several new integral inequalities for various classes of harmonic
(h, r)-convex functions.

Theorem 2.16. Let f € (h,r,I) and g € (k,r,I) with a < b. Then, for
r >0, we have

] M) )
<)o [

+N(a,b) ( /O 1[h(t)k:(t)]%dt>r] .

where M(a,b) and N(a,b) are given by (2) and (3) respectively.
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Proof. Let f € (h,r,I) and g € (k,r,I) with £ = 1. Then, we have

(2@) [()}] L @r 77, vayel

Vz,y € 1.

_ ab —
rrm G and y = = ) s Then

) <)) ()] i)

([ W@rs@r + oo + v o) + or)?) a

( /0 s d)][g(@]dt)T + ( /0 ) [g(b)]dt)r |
(@)][g(b

nu1w)+(/f(m<mgr

(

(

@ [
(h(1 — O)[f(@)]" + RO MQM)]+M1—mﬂMW%QT
( o

IN

—
—~

1 1 T
/0 BO[F @) + k(1= 8)[f®)]")7 (k1 = t)[g(a )]’+k(t)[9(b)}’“)fdt>

< sz_ /f x) +M(a (/l[h(t)k(l—t)]%dty
+N(a b)( /0 [h(t)k(t)}idtﬂ
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This implies
)T b CMI [ 2
< 2{11(%)1:(%)] [M(a,b)(/ol[h(t)k(l —t)ﬁdt)r—|-N(a,b)(/Ol[h(t)k(t)]%dt>T],

which is the required result. O

Remark. For suitable and appropriate choice of r1, ro and the function
h, one can obtain several new integral inequalities for various classes of
harmonic (h,r)-convex functions. We leave these details to the interested
readers.
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